TOPOLOGICAL DIRECT SUM DECOMPOSITIONS OF BANACH SPACES

BY

M. VALDIVIA

Facultad de Matemáticas, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Valencia, Spain

ABSTRACT

Let Y and Z be two closed subspaces of a Banach space X such that $Y \neq \{0\}$ and Y + Z = X. Then, if Z is weakly countably determined, there exists a continuous projection T in X such that ||T|| = 1, $T(X) \supset Y$, $T^{-1}(0) \subset Z$ and dens T(X) = 0 dens Y. It follows that every Banach space X is the topological direct sum of two subspaces X_1 and X_2 such that X_1 is reflexive and dens $X_2^{**} = 0$ dens $X_2^{**} = 0$.

The vector spaces used here are defined on the field K of the real or complex numbers. If X is a Banach space, let X^* denote its dual and X^{**} its bidual. $\|\cdot\|$ denotes the norm in X. As usual, we shall identify X with a subspace of X^{**} . If A is a subset of X, A_s stands for A endowed with the topology induced by the weak one in X, \tilde{A} for the weak-star closure of A in X^{**} , A^{\perp} for the subspace of X^* orthogonal to A, and A° for the polar subset of A in X^* . If M is a subset of X^* , M_{σ} denotes M endowed with the topology induced by the weak-star one defined on X^* , and M_{\perp} the subspace of X orthogonal to M. If X belongs to X and X to X^* , X, X, X is tands for X. Let X^* be the vector space X^* endowed with the topology of the uniform convergence on the absolutely convex weakly compact subsets of X; it is clear that the weak-star closure of a subspace of X^* coincides with its closure in X^* .

When K denotes the field of the real numbers, H stands for the field of the rational ones; if, instead, K is the field of the complex numbers, H denotes the field of all the numbers a + bi, a and b rational.

If A is a set, |A| is its cardinal number. The density character of a topological space E is the cardinal number λ of the first ordinal number such that there exists a dense subset A of E with $|A| = \lambda$. We shall write dens $E := \lambda$.

Received May 19, 1989

According to Vasak [6], let us say that a Banach space is weakly countably determined if there exists a sequence (M_n) of bounded closed absolutely convex neighbourhoods of the origin in X such that, given an arbitrary $x \in X$, there exists a decreasing subsequence (M_{n_i}) of (M_n) such that

$$x \in \bigcap_{j=1}^{\infty} \tilde{M}_{n_j} \subset X.$$

Every weakly K-analytic Banach space, in particular every weakly compactly generated Banach space, is weakly countably determined.

The following proposition will be used in the proof of Theorem 1.

PROPOSITION. Let (M_n) be a decreasing sequence of bounded closed and absolutely convex subsets of a Banach space X. If

$$\bigcap_{n=1}^{\infty} \tilde{M}_n \subset X,$$

the set $\bigcup_{n=1}^{\infty} M_n^{\circ}$ is a neighbourhood of the origin in X_{μ}^* .

Proof. Given

$$u \in X^*, \quad u \notin \bigcup_{n=1}^{\infty} M_n^{\circ},$$

let us choose, for every positive integer n,

$$x_n \in M_n, \quad |\langle x_n, u \rangle| > 1.$$

The sequence (x_n) is bounded in X, hence it has a weak-star cluster point x_0 in X^{**} . Obviously,

$$x_0 \in \bigcap_{n=1}^{\infty} \tilde{M}_n \subset X,$$

and $|\langle x_0, u \rangle| \ge 1$. It follows that

$$\left\{v \in X^* : |\langle x, v \rangle| < 1, x \in \bigcap_{n=1}^{\infty} \tilde{M}_n\right\} \subset \bigcup_{n=1}^{\infty} M_n^{\circ}.$$

Since $\bigcup_{n=1}^{\infty} \tilde{M}_n$ is an absolutely convex weakly compact subset of X, the conclusion follows.

THEOREM 1. Let Y and Z be two closed subspaces of a Banach space X such that $Y \neq \{0\}$ and Y + Z = X. Then, if Z is weakly countably determined, there ex-

ists a continuous projection T in X such that ||T|| = 1, $T(X) \supset Y$, $T^{-1}(0) \subset Z$ and dens T(X) = dens Y.

PROOF. Let α be the density character of Y. Let A_0 be a dense subset of Y such that $|A_0| = \alpha$. We can choose in Z^{\perp} a weak-star dense subset B_0 such that $|B_0| \leq \alpha$.

Let us choose in Z a sequence (M_n) of closed absolutely convex and bounded neighbourhoods of the origin in such a way that, given an arbitrary vector z of Z, there exists a decreasing subsequence (M_{n_i}) of (M_n) such that

$$z\in\bigcap_{j=1}^{\infty}\tilde{M}_{n_j}\subset Z.$$

Let us denote by $|\cdot|_n$ the Minkowski functional of M_n and M_n° , M_n° being the polar set of M_n in X^* , $n = 1, 2, \ldots$

Given positive integers r and s and arbitrary vectors $x \in X$, $u \in X^*$, let us choose

$$v(x) \in X^*, \quad z(u,r,s) \in M_r$$

such that

$$||v(x)|| = |z(u,r,s)|_r = 1,$$

$$\langle x, v(x) \rangle = ||x||, \qquad |\langle z(u,r,s), u \rangle| \geq \frac{s-1}{s} |u|_r.$$

We shall define inductively two sequences of subsets (A_n) and (B_n) , $A_n \subset X$ and $B_n \subset X^*$, $n = 0, 1, 2, \ldots, A_0$ and B_0 have been selected before. Suppose now that we have defined $A_1, \ldots, A_n, B_1, \ldots, B_n$, in such a way that $|A_i| = \alpha$ and $|B_i| \le \alpha$, $i = 0, 1, 2, \ldots, n$. Let C_n and D_n be the linear hull in H of the sets A_n and B_n , respectively. Let us define

$$A_{n+1} = C_n \cup \{z(u,r,s) : u \in D_n, r,s = 1,2,...\},$$

 $B_{n+1} = D_n \cup \{v(x) : x \in C_n\}.$

Denote by E and F the closures of $\bigcup_{n=0}^{\infty} A_n$ and $\bigcup_{n=0}^{\infty} B_n$ in X and X_{σ}^* , respectively. Obviously, E and F are vector spaces.

Choose x in E, z in F_{\perp} and $\epsilon > 0$. Select a positive integer m and a vector t in A_m such that $||x - t|| < \epsilon$. Then

$$||x|| \le ||x - t|| + ||t|| < \epsilon + ||t|| = \epsilon + \langle t, v(t) \rangle = \epsilon + \langle t + z, v(t) \rangle$$

$$\le \epsilon + |\langle t - x, v(t) \rangle| + |\langle z + x, v(t) \rangle| \le \epsilon + ||t - x|| + ||z + x|| \le ||z + x|| + 2\epsilon,$$

and, therefore,

$$||x|| \leq ||x+z||.$$

Hence $E \cap F_{\perp} = \{0\}$, and the projection T of $E + F_{\perp}$ onto E along F_{\perp} has norm equal to one.

Let us suppose now that there exists v in $E^{\perp} \cap F$, $v \neq 0$. Choose a vector x_0 in X such that $\langle x_0, v \rangle = 3$. It follows that

$$x_0 = y_0 + z_0, \quad y_0 \in Y \subset E, \quad z_0 \in Z,$$

hence $\langle z_0, v \rangle = 3$. We can select a decreasing subsequence (M_{n_j}) of (M_n) such that

$$z_0 \in M := \bigcap_{j=1}^{\infty} \tilde{M}_{n_j} \subset Z.$$

Obviously,

$$(v+M^{\circ})\cap M^{\circ}=\varnothing.$$

According to Proposition 1, $\bigcup_{j=1}^{\infty} M_{n_j}^{\circ}$ is a neighbourhood of the origin in X_{μ}^* , hence there exists a member M_r of the sequences (M_{n_j}) and a vector $w \in X^*$ such that

(2)
$$w \in (v + M_r^{\circ}) \cap \left(\bigcup_{n=0}^{\infty} B_n\right).$$

It follows from (1) and (2) that

$$|w|_r > 1$$
, $|w - v|_r \le 1$.

Let s be a positive integer such that

$$\frac{s-1}{s} |w|_r > 1.$$

Then, z(w, r, s) belongs to E and, therefore,

$$1 \geq |w-v|_r \geq |\langle z(w,r,s), w-v\rangle| = |\langle z(w,r,s), w\rangle| \geq \frac{s-1}{s} |w|_r > 1,$$

a contradiction. It follows that $E + F_{\perp} = X$. Finally,

$$T(X) = E \supset Y$$
, $T^{-1}(0) = F_{\perp} \subset Z$, $||T|| = 1$, dens $T(X) = \text{dens } Y$. q.e.d.

REMARK. The method used above is suggested by a simple proof, given in [3] (a proof which holds also in the context of Fréchet spaces), of a result due to D. Amir and J. Lindenstrauss on the projective resolution of the identity operator in a weakly compactly generated Banach space [1]. If, in Theorem 1, Y is a finite-dimensional Banach space, it follows that X is weakly countably determined. In this situation, the former reasoning can be adapted, using a standard transfinite-induction procedure, to get straightforwardly a result of Vasak on projective resolution of the identity in weakly countably determined Banach spaces [6].

The following proposition will be used in the proof of Theorem 2.

Proposition 2. Let U, V and W be three closed subspaces of a Banach space E. If V is reflexive and complemented in E, with U as its topological complement, then

dens
$$W/(V \cap W) \leq \text{dens } U + \text{dens } E/W$$
.

PROOF. Let φ be the canonical mapping from E onto $E/(V \cap W)$. This last space is isomorphic to the topological direct sum of $\varphi(U)$ and $\varphi(V)$, and, since $\varphi(U)$ is isomorphic to U, it follows that

(3)
$$\operatorname{dens} E/(V \cap W) = \operatorname{dens} \varphi(U) + \operatorname{dens} \varphi(V) = \operatorname{dens} U + \operatorname{dens} \varphi(V)$$
.

Let ϕ be the canonical mapping from $E/(V \cap W)$ onto $(E/(V \cap W))/\varphi(W)$. Since

$$\varphi(V)\cap\varphi(W)=\{0\},$$

the restriction Λ of ϕ to the closed unit ball B of $\varphi(V)$ is injective and continuous, so that, by the reflexivity of V, B is weak compact and therefore the mapping

$$\Lambda: B_s \to \phi(B)_s$$

is a homeomorphism, hence

dens
$$\varphi(V) \leq \operatorname{dens}(E/(V \cap W))/\varphi(W)$$
.

Obviously, $(E/(V \cap W))/\varphi(W)$ is isomorphic to E/W, hence

dens
$$\varphi(V) \leq \operatorname{dens} E/W$$
.

Finally, from (3) and (4) we get

dens
$$W/(V \cap W) \le \text{dens } E/(V \cap W) \le \text{dens } U + \text{dens } E/W$$
. q.e.d

THEOREM 2. Let Y be a closed subspace of a Banach space X. If X/Y is reflexive, then there exists a complemented subspace Z of X such that

$$Z \supset Y$$
, dens $Z^{**} = \text{dens } Y^{**}$.

PROOF. Obviously, we can suppose $Y \neq \{0\}$. Y^{\perp} is a reflexive subspace of X^* and X^*/Y^{\perp} is isomorphic to Y^* , hence, denoting by φ the canonical mapping from X^* onto X^*/Y^{\perp} and by M the open unit ball of this quotient space, we can find a dense subset $\{u_i : i \in I\}$ of M such that

$$|I| = \text{dens } Y^*$$
.

Given $i \in I$, let us choose v_i in the unit ball of X^* such that $\varphi(v_i) = u_i$. Denoting by F the closed linear hull of $\{v_i : i \in I\}$ in X^* , φ applies the unit ball of F onto a dense subset of M. The Closed Graph Theorem gives then $\varphi(F) = X^*/Y$. It follows that $Y^{\perp} + F = X^*$.

Using Theorem 1 we can get a closed subspace G of X^* which has a complement H such that

dens
$$G = \text{dens } F$$
, $H \subset Y^{\perp}$.

Since H_{\perp} contains Y, it follows that X/H_{\perp} is reflexive, hence X^{**}/X , Y^{**}/Y and $(H_{\perp})^{**}/H_{\perp}$ are all isomorphic. On the other hand, H is weak-star closed in X^* , hence H^{\perp} coincides with the weak-star closure of H_{\perp} in X^{**} . Therefore G_{σ}^{*} is weak-star isomorphic to $(H^{\perp})_{\sigma}$ and G^{\perp} is reflexive. It follows that

$$\operatorname{dens}(H^{\perp})_{\sigma} \leq \operatorname{dens} F,$$

hence

$$\operatorname{dens} H_{\perp} \leq \operatorname{dens} Y^{**}.$$

Therefore

dens
$$Y^{**} \le \text{dens}(H_{\perp})^{**} = \text{dens} H_{\perp} + \text{dens}(H_{\perp})^{**}/H_{\perp}$$

 $\le \text{dens} Y^{**} + \text{dens} Y^{**}/Y = \text{dens} Y^{**},$

and, since H^{\perp} is isomorphic to $(H_{\perp})^{**}$, it follows that

dens
$$H^{\perp}$$
 = dens Y^{**} .

Using now Proposition 2 in the case $U = H^{\perp}$, $V = G^{\perp}$, W = X and $E = X^{**}$ we get $V \cap W = G_{\perp}$, hence

dens $X/G_1 \le \text{dens } H^{\perp} + \text{dens } X^{**}/X = \text{dens } Y^{**} + \text{dens } Y^{**}/Y = \text{dens } Y^{**}.$

Let us proceed now as at the beginning of the proof: we can find a closed subspace L of X such that

$$L + G^{\perp} = X$$
, dens $L = \text{dens } X/G_{\perp} \leq \text{dens } Y^{**}$.

Let T be the closure of L + Y in X. Then

dens
$$T \leq \text{dens } Y^{**}$$
.

Using Theorem 1 we get a complemented subspace Z of X such that $Z \supset T$, and dens Z = dens T. This Z satisfies the required conditions. q.e.d.

To prove the following theorem we shall need the following result [4]: (a) Let Y be a closed subspace of a Banach space X. Then $X + \tilde{Y}$ is a Banach space.

THEOREM 3. Every Banach space X is the topological direct sum of two subspaces X_1 and X_2 such that X_1 is reflexive and

$$dens X_2^{**} = dens X^{**}/X$$
.

Proof. Obviously, it is enough to prove the result in the case

dens
$$X > \text{dens } X^{**}/X$$
.

Let α be the density character of X^{**}/X . Let \mathfrak{F} be the family of all the closed subspaces F of X such that dens $F = \alpha$. Put

$$G:=U\{\tilde{F}\!:\!F\!\in\!\mathfrak{F}\}.$$

G is a closed subspace of X^{**} . We can find a subset $\{x_i : i \in I\}$ of G such that the linear hull of $X \cup \{x_i : i \in I\}$ is dense in G and $|I| \le \alpha$.

Given $i \in I$ we can find F_i in \mathfrak{F} such that $x_i \in \tilde{F}_i$. Let Y be the closed linear hull of $\bigcup \{F_i : i \in I\}$ in X. Then dens $Y = \alpha$ and $X + \tilde{Y}$ is dense in G. Using now the result (a), it follows that $X + \tilde{Y} = G$.

Let φ be the canonical mapping from X onto X/Y. We shall identify, as usual, $(X/Y)^*$ with Y^{\perp} . Let (x_n) be a sequence in the open unit ball of X/Y. We can find y_n in the unit ball of X in such a way that $\varphi(y_n) = x_n$, $n = 1, 2, \ldots$. The sequence (y_n) has a weak-star cluster point y in X^{**} . Obviously, y belongs to G. Let y = z + t, $z \in X$, $t \in \tilde{Y}$. We shall prove that $\varphi(z)$ is a weak cluster point of (x_n) in X/Y: take ϵ an arbitrary positive number and an arbitrary vector u in Y^{\perp} . There exists a positive integer n_0 such that

$$|\langle y - y_n, u \rangle| < \epsilon,$$

for infinitely many n.

Taking into account that \tilde{Y} coincides with $(Y^{\perp})^{\perp}$, it follows that

$$|\langle \varphi(z) - x_n, u \rangle| = |\langle z - y_n, u \rangle| = |\langle y - y_n, u \rangle| < \epsilon$$

for infinitely many n, hence X/Y is reflexive. Theorem 2 gives now a subspace X_2 of X with a topological complement X_1 such that

$$X_2 \supset Y_1$$
 dens $X_2^{**} = \text{dens } Y^{**}$.

Obviously, X_1 is reflexive and

dens
$$X_2^{**}$$
 = dens Y^{**} = dens Y + dens Y^{**}/Y = α + dens X^{**}/X = dens X^{**}/X .

q.e.d.

COROLLARY [5]. Let X be a Banach space such that X^{**}/X is separable. Then X is the topological direct sum of two subspaces X_1 and X_2 such that X_1 is reflexive and X_2^{**} is separable.

In [2], A. Sersouri provides an explicit decomposition of the type we consider above in the case of a quasi-reflexive space which is isometric to its bidual.

ACKNOWLEDGEMENT

The author thanks the referee for his careful reading of the manuscript and for his suggestions.

REFERENCES

- 1. D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46.
 - 2. A. Sersouri, On James' type space, Trans. Am. Math. Soc. 310 (2) (1988), 715-745.
- 3. M. Valdivia, Espacios de Fréchet de generación débilmente compacta, Collect. Math. 38 (1987), 17-25
 - 4. M. Valdivia, Banach spaces X with X** separable, Isr. J. Math. 59 (1987), 107-111.
 - 5. M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977), 11-13.
- 6. L. Vasak, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1980), 11-19.